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Abstract—We derive a sound lower bound on the mean time to
failure of periodic systems with (m,k) constraints. We assume
that upper bounds on the failure probabilities of each system
iteration, e.g., a job or a runtime activation of a periodic task, or
a single actuation cycle of a control loop, are known and that they
satisfy the IID assumption. Our analysis leverages prior work on
the well-studied a-within-consecutive-b-out-of-c:F system model.

I. INTRODUCTION

For safety certification, the reliability of a safety-critical
system must be carefully analyzed before deployment. Typ-
ically, this is done using generic analyses such as fault tree
analysis (FTA) [18] and failure mode and effects analysis
(FMEA) [19], or domain-specific analyses (e.g. [5, 16]).
The analyzed reliability is reported using metrics such as the
mean time to failure (MTTF) or the failures-in-time (FIT) [20],
or sometimes simply using a failure probability.

Many periodic safety-critical systems are subject to (m, k)
constraints, i.e., at least m iterations out of any k consecutive
iterations must be correct [10]. For example, many real-time
systems can tolerate a few deadline misses [11] and well-
designed, robust control applications remain functional despite
a few missed or incorrect actuations [4], thanks to the underly-
ing physics. However, accurate and sound reliability analysis
of systems with (m, k) constraints is still an open problem.

Prior works focus on the reliability analysis of individual
iterations, e.g., analyzing the probability of a deadline miss
or a faulty message transmission in any iteration, as in [3,
8, 16], and then extrapolate overall reliability guarantees for
the system, e.g., by analyzing the probability of no deadline
misses or no faulty message transmissions. For systems with
(m, k) constraints, this zero-tolerance hard real-time approach
towards reliability analysis results in excessively pessimistic
reliability bounds, and consequently in cost-inefficient designs
that under-utilize system resources.

In this work, we propose a new reliability analysis for
systems with (m, k) constraints. We assume that (an upper
bound on) the failure probability for each iteration is known
in advance and that these iteration failure probabilities satisfy
the IID assumption (i.e., they are identical for each iteration
and are independent of other failed iterations). For instance,
this assumption is satisfied by Broster et al.’s analysis [3]

of the probability of a timely transmission of a Controller
Area Network (CAN) message, or our prior work [8] on the
reliability analysis of replicated CAN messages.

We then leverage existing results on the reliability analysis
of the well-studied a-within-consecutive-b-out-of-c:F system
model [12] to derive the probability that the system violates
its (m, k) constraint for the first time during the nth iteration.
Finally, using these probabilities, we characterize the system
reliability in terms of a lower bound on its MTTF.

This work is part of an ongoing project on reliability
analysis of CAN-based networked control systems (NCS) with
replicated tasks that are characterized using (m, k) constraints.
We are currently developing an analysis to derive IID failure
probabilities for each iteration of a control loop in the NCS,
which, together with the analysis presented in this paper, will
help quantify the overall reliability of the NCS.

II. SYSTEM MODEL

Let PF (for Failure) denote an upper bound on the prob-
ability that a single iteration of the system fails, and let
PS = 1−PF (for Success). We assume that 0 < PF < 1 and
that PF satisfies the IID assumption. Since reliability analyses,
such as the ones in [3, 8], often analyze the worst-case scenario
for any iteration, the resulting iteration failure probabilities
satisfy this assumption.

Let S denote the system being analyzed and T denote its
activation period. S fails as soon as it violates the (m, k)
constraint. That is, it fails during the nth iteration if the nth

iteration fails and it is the (k−m+ 1)th failed iteration in the
last k iterations (thus violating the (m, k) constraint), and if
the (m, k) constraint has not been violated before. This implies
that S cannot fail during the first k −m iterations.

The MTTF of a system is defined as its expected lifetime.
That is, for a system S with an (m, k) constraint, MTTF is the
average time that it takes for S to violate its (m, k) constraint.
It can be computed using the well-known definition MTTF =∫∞

0
t× f(t) dt [12, §2.2], where f(t) denotes the probability

density function (p.d.f.) of S, i.e. the probability that S violates
its (m, k) constraint for the first time at time instant t. The
objective of this paper is to derive a lower bound on the MTTF
of system S, given its iteration failure probability PF .



III. OVERVIEW

The proposed analysis consists of four steps. In Step 1, we
formulate the probability that S violates its (m, k) constraint
for the first time in its nth iteration. In Step 2, we define a
lower bound on this probability, since obtaining an exact value
is computationally hard. In Step 3, we lower-bound the p.d.f.
of S, which is required for computing its MTTF. Finally, in
Step 4, we derive a lower bound on the MTTF using the lower
bound on the p.d.f. Steps 1-4 are explained in detail below.

Step 1. S violates its (m, k) constraint for the first time in
its nth iteration if the following conditions hold:
E1: The nth iteration must fail.
E2: Exactly k−m iterations must fail out of the k− 1 itera-

tions between the (n−k+1)th and the (n−1)th iteration.
E3: Fewer than k − m + 1 iterations fail out of any k

consecutive iterations, among the first n− 1 iterations.
Thus, given E1, E2, and E3, the probability that S violates
its (m, k) constraint for the first time in its nth iteration is
lower-bounded by P (E1)× P (E2)× P (E3).

Step 2. From §II, P (E1) = PF . Summing over all possible
combinations of k−m iteration failures in k − 1 consecutive
iterations, P (E2) =

(
k−1
k−m

)
P

(k−m)
F P

(m−1)
S . But obtaining the

exact value of P (E3) is computationally challenging, since
it requires evaluating all possible combinations of failed and
successful iterations among the first n− 1 iterations.

Thus, we approximate P (E3) using the well-studied a-
within-consecutive-b-out-of-c:F system [12, §11.4], which
consists of c (c ≥ a) linearly ordered components, and which
fails iff at least a (a ≤ b) components fail among any b
consecutive components. That is, in terms of the (m, k) model,
an a-within-consecutive-b-out-of-c:F system fails if it violates
the (b− a + 1, b) constraint. We refer to this system model
as an a/Con/b/c:F system, for brevity. We model E3 as an
a/Con/b/c:F system where a = k − m + 1, b = k, and c =
n−1, and lower-bound P (E3) using a reliability lower bound
RLB(a, b, c) of this system, which we will introduce in §IV.

From the above definitions of P (E1), P (E3), P (E3), if
n > k −m, a lower bound on the probability that S violates
its (m, k) constraint for the first time during its nth iteration is:

gLB(n) =

(
k − 1

k −m

)
P

(k−m+1)
F P

(m−1)
S

× RLB (k −m + 1, k, n− 1) . (1)

Step 3. Recall from §II that T denotes the period of system S.
Accordingly, any time t such that (n − 1)T < t ≤ nT
corresponds to the execution of the nth iteration of S. Thus,
the sum of the p.d.f. of system S at all time instants in
((n− 1)T, nT ] is lower bounded by gLB(n), i.e.,∫ nT

(n−1)T

f(t) ≥ gLB(n). (2)

In addition, f(t) = 0, i.e., the system is reliable, for all
t ≤ (k −m)T since by definition of the (m, k) constraint, the
system can fail only after k −m iterations.

Step 4. A lower bound on the MTTF is derived using the ex-
pression MTTF =

∫∞
0

t× f(t) dt and Eq. 2. However, since
gLB(n) in Eq. 2 is defined in terms of RLB(k−m+1, k, n−1),
a recursive expression with complex definitions of its subprob-
lems (see §IV), symbolic integration to lower bound the MTTF
is infeasible, even with tools such as Mathematica [1].

Instead, we propose a numeric, but sound approach to lower-
bound the MTTF that relies on computing the value of gLB(n)
at finitely many data points (see §V).

IV. THE a/CON/b/c:F SYSTEM MODEL

We assume that the system consists of IID components.1 We
first define a lower bound on the reliability of an a/Con/b/c:F
system, i.e., a lower bound on the probability that the system
does not fail, using prior results and then prove that this lower
bound decreases with increasing c if certain conditions hold.

A. Reliability of an a/Con/b/c:F system

Let R(a, b, c) denote the exact reliability of an a/Con/b/c:F
system. A brute-force approach to compute R(a, b, c) requires
enumerating all combinations of failed/not-failed components,
selecting the combinations for which the system does not
fail, and then adding the event probabilities for these reliable
combinations. However, since the number of combinations
that need to be checked are exponential in c, the brute-force
approach is infeasible, particularly since c can easily exceed
1050 (see §VI for details).

We instead use the results of Sfakianakis et al. [17] to
derive a lower bound on R(a, b, c), denoted RLB(a, b, c), for
large values of c. Sfakianakis et al.’s analysis breaks the
problem into smaller subproblems for which exact analyses
are available. Their analysis, as well as the exact analyses for
different types of subproblems, are explained in detail in [12].

Table I summarizes the relevant results in [12] for different
values of a, b, and c. Cases 1 and 2 are trivial: if a = 0,
the system is always unreliable, and if a = 1, the system is
reliable only if none of the c components fail. Cases 3, 5, 6,
and 7 correspond to special cases where c is small (less than
or equal to either 2b or 4b) and for which exact reliabilities can
be computed. Cases 4 and 8 correspond to large, unbounded
values of c and are resolved using Sfakianakis et al.’s recursive
analysis. A generic lower bound RLB(a, b, c) is defined by
combining all of these cases.

B. RLB(a, b, c) decreases with increasing c

The MTTF analysis in §V depends on the property that
RLB(a, b, c) decreases with increasing c. This property triv-
ially holds for cases a = 0 and a = 1, as seen from the
definitions of R1(a, b, c) and R2(a, b, c) in Table I. However,
proving the property for cases a = 2 and a > 2 is non-trivial.
We discuss the more general case a > 2 below. Case a = 2 is
not discussed due to space constraints, but is handled similarly.

1We use the terms iteration and component interchangeably. We use the
term component in this section since it is consistent with the terminology
used in the existing literature on the a/Con/b/c:F model.



# Case Definition Type Source
1 a = 0 R1(a, b, c) = 0 Exact –
2 a = 1 R2(a, b, c) = P cS Exact –

3 a = 2 ∧ c ≤ 4b R3(a, b, c) =
∑b c+b−1

b c
i=0

(
c−(i−1)(b−1)

i

)
P iFP

c−i
S Exact [12, §11.4.1]

(Eqs. 11.9 and 11.10)
4 a = 2 ∧ c > 4b R4(a, b, c) = R3(a, b, b + t− 1)(R3(a, b, b + 3))u

where t = (c− b + 1) mod 4 and u =
⌊
c−b+1

4

⌋ LB [12, §11.4.1] (Eq. 11.16)

5 a > 2 ∧ c ≤ 2b ∧
a = b

R5(a, b, c) =

{
1 0 ≤ c < a

1− P aF − (c− k)P aFPS a ≤ c ≤ 2a
Exact [12, §9.1.1]

(Eqs. 9.2, 9.9, and 9.20)
6 a > 2 ∧ c ≤ 2b ∧

a 6= b ∧ c ≤ b
R6(a, b, c) =

∑c
i=c−a+1

(
c
i

)
P iSP

c−i
F Exact [12, §7.1.1] (Eq. 7.2)

7 a > 2 ∧ c ≤ 2b ∧
a 6= b ∧ c > b

R7(a, b, c) =
∑a−1
i=0

(
b−s
i

)
P iFP

b−s−i
S M(a′, s, 2s)

where s = c− b and a′ = a− i,

and M(a′, s, 2s) =



1 a′ > s

R2(a′, s, 2s) a′ = 1

R3(a′, s, 2s) a′ = 2

R5(a′, s, 2s) a′ > 2 ∧ a′ = s

R7(a′, s, 2s) a′ > 2 ∧ a′ 6= s

Exact [12, §11.4.1] (Eq. 11.14)

8 a > 2 ∧ c > 2b R8(a, b, c) = Rφ(a, b, b + t− 1)(Rφ(a, b, b + 3))u

where t = (c− b + 1) mod 4 and u =
⌊
c−b+1

4

⌋
,

and Rφ(a, b, c) =


R5(a, b, c) a = b

R6(a, b, c) a 6= b ∧ a ≤ b

R7(a, b, c) a 6= b ∧ a > b

LB [12, §11.4.1] (Eq. 11.16)

TABLE I. Type indicates whether the reliability definition for that respective case is an exact value or a lower bound.

Notice that case a > 2 corresponds to multiple cases (5-8)
in Table I. In fact, because of the recursive definitions for
some of these cases, case a > 2 actually depends on the
remaining cases as well, which makes it hard to prove that
RLB(a, b, c) decreases with increasing c. Instead, we prove
a weaker property: we show that if RLB(a, b, c) decreases
with increasing c for small values of c (i.e., for c ≤ 2b), then
RLB(a, b, c) also decreases with increasing c for larger values
of c (i.e., for c > 2b). Since b is typically relatively small,
i.e., b = k (recall Step 2 from §III), the if condition can be
easily checked for specific values of a, b, c and p through
exhaustive enumeration.

Lemma 1. For c ≥ a and a > 2, if RLB(a, b, c) is monotoni-
cally decreasing for c ∈ {a, . . . , 2b + 1}, then RLB(a, b, c) is
also monotonically decreasing for c ≥ 2b + 1, i.e.,

if ∀c ≤ 2b : RLB(a, b, c) ≥ RLB(a, b, c + 1),

then ∀c > 2b : RLB(a, b, c) ≥ RLB(a, b, c + 1). (3)

Proof. The proof has three steps. In the first step, we simplify
the if condition in Eq. 3 for the case c < 2b; and then in
the second and the third step, we use it to prove the then
condition in Eq. 3 for cases (c− b + 1) mod 4 = 3 and (c−
b + 1) mod 4 < 3, respectively.

Step 1 [c < 2b]. Since a > 2 and c < 2b imply that c +
1 ≤ 2b, the if condition in Eq. 3 can be simplified using the

definition of Rφ(a, b, c) from Case 8 in Table I as follows.

RLB(a, b, c) ≥ RLB(a, b, c + 1)

≡ Rφ(a, b, c) ≥ Rφ(a, b, c + 1).

Step 2 [c > 2b and (c− b+ 1) mod 4 = 3].

RLB(a, b, c)

RLB(a, b, c + 1)

{since a > 2 and c > 2b, both terms RLB(a, b, c) and
RLB(a, b, c + 1) are resolved using case 8 in Table I; thus,
from R8(a, b, c)’s definition, and letting x = c− b + 1}

=
Rφ(a, b, b + (x mod 4)− 1)(Rφ(a, b, b + 3))b

x
4 c

Rφ(a, b, b + ((x + 1) mod 4)− 1)(Rφ(a, b, b + 3))b
x+1
4 c

{since x mod 4 = 3 implies (x + 1) mod 4 = 0}

=
Rφ(a, b, b + 2)(Rφ(a, b, b + 3))b

x
4 c

Rφ(a, b, b− 1)(Rφ(a, b, b + 3))b
x+1
4 c

{since x mod 4 = 3 implies
⌊
x+1

4

⌋
=
⌊
x
4

⌋
+ 1}

=
Rφ(a, b, b + 2)(Rφ(a, b, b + 3))b

x
4 c

Rφ(a, b, b− 1)(Rφ(a, b, b + 3))b
x
4 c+1



{dividing numerator and denominator by (Rφ(a, b, b+3))b
x
4 c}

=
Rφ(a, b, b + 2)

Rφ(a, b, b− 1)R(a, b, b + 3)

{since Rφ(a, b, b− 1) ≤ 1 (being a probability)}

≥ Rφ(a, b, b + 2)

Rφ(a, b, b + 3)

{since 2 < a ≤ b =⇒ 2 < b =⇒ b + 2 < 2b; from
the if condition in Eq. 3 and from Step 1, Rφ(a, b, b + 2) ≥
Rφ(a, b, b + 3)}

≥ 1.

Step 3 [c > 2b and (c− b+ 1) mod 4 < 3].

RLB(a, b, c)

RLB(a, b, c + 1)

{since a > 2 and c > 2b, both terms RLB(a, b, c) and
RLB(a, b, c + 1) are resolved using case 8 in Table I; thus,
from R8(a, b, c)’s definition, and letting x = c− b + 1}

=
Rφ(a, b, b + (x mod 4)− 1)(Rφ(a, b, b + 3))b

x
4 c

Rφ(a, b, b + ((x + 1) mod 4)− 1)(Rφ(a, b, b + 3))b
x+1
4 c

{since x mod 4 < 3 implies
⌊
x+1

4

⌋
=
⌊
x
4

⌋
}

=
Rφ(a, b, b + (x mod 4)− 1)(Rφ(a, b, b + 3))b

x
4 c

Rφ(a, b, b + ((x + 1) mod 4)− 1)(Rφ(a, b, b + 3))b
x
4 c

{dividing numerator and denominator by (R(a, b, b+ 3))b
x
4 c}

=
Rφ(a, b, b + (x mod 4)− 1)

Rφ(a, b, b + ((x + 1) mod 4)− 1)

{since x mod 4 < 3 implies (x + 1) mod 4 = 1 + x mod 4}

=
Rφ(a, b, b + (x mod 4)− 1)

Rφ(a, b, b + (x mod 4))

{since x mod 4 < 3 =⇒ b + (x mod 4) − 1 < b + 2,
and since 2 < k ≤ b =⇒ 2 < b =⇒ b + 2 < 2b, we
have b + (x mod 4) − 1 < 2b; thus, from the if condition
in Eq. 3 and from Step 1, Rφ(a, b, b + (x mod 4) − 1) ≥
Rφ(a, b, b + (x mod 4))}

≥ 1.

In the next section, while describing the proposed MTTF
analysis, we assume that RLB(a, b, c) decreases with increas-
ing c. When applying the proposed analysis (e.g., in §VI), for
every use of RLB(a, b, c), we check that the if condition in
Lemma 1 holds in order to justify this assumption.

V. MTTF ANALYSIS

Recall the definition of gLB(n) from §III (Eq. 1). Since
RLB(a, b, c) decreases with increasing c and since gLB(n) is
defined in terms of RLB(k −m + 1, k, n − 1), gLB(n) also
decreases with increasing n.

Assume that the value of the function gLB(n) is known
(i.e., computed) at finitely many data points d0, d1, d2, . . . ,
dD, such that each di ∈ N and k − m + 1 = d0 < d1 <
d2 < . . . < dD. Using time instants d0T , d1T , d2T , . . . , dDT
corresponding to the start time of iterations d0, d1, d2, . . . , dD,
and the property that gLB(n) is decreasing with increasing n,
we derive a lower bound on the MTTF as follows.

Lemma 2.

MTTF ≥
D−1∑
i=0

(
diT × gLB(di+1)× (di+1 − di)

)
(4)

Proof.

MTTF =

∫ ∞
0

t× f(t) dt

{splitting (0,∞) into a finite number of subintervals (0, d0T ],
(d0T, d1T ], . . . , (dD−1T, dDT ], and (dDT, ∞); and drop-
ping the integrals for subintervals (0, d0T ] and (dDT, ∞)
since we are interested in lower-bounding the MTTF}

≥
D−1∑
i=0

∫ di+1T

diT

t× f(t) dt

{since for all t ∈ (diT, di+1T ], t ≥ diT}

≥
D−1∑
i=0

(
diT ×

∫ di+1T

diT

f(t) dt

)
{splitting each subinterval (diT, di+1T ] into multiple subin-
tervals (diT, (di + 1)T ], ((di + 1)T, (di + 2)T ], . . . ,
((di+1 − 1)T, (di+1)T ], each of length T}

=

D−1∑
i=0

diT ×

di+1−di−1∑
j=0

∫ (di+j+1)T

(di+j)T

f(t) dt


{since

∫ (di+j+1)T

(di+j)T
f(t) dt ≥ gLB(di + j + 1) (from Eq. 2)}

≥
D−1∑
i=0

diT ×

di+1−di−1∑
j=0

gLB(di + j + 1)


{since gLB(n) is decreasing with increasing n, for each integer
j in the interval [0, di+1−di−1], gLB(di+j+1) ≥ gLB(di+
di+1 − di − 1 + 1) = gLB(di+1)}

≥
D−1∑
i=0

diT ×

di+1−di−1∑
j=0

gLB(di+1)


{simplifying the innermost summation}

=

D−1∑
i=0

(
diT × gLB(di+1)× (di+1 − di)

)
Let MTTFLB denote the lower bound derived in Lemma 2.

If D � dD, MTTFLB can be computed quickly. If the
individual data points d0, d1, d2, . . . , dD are appropriately
chosen, then the computed MTTFLB is sufficiently close to
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Fig. 1: (a) gLB(t) for m = 3, k = 10, and PF = 10−7, where D = 5050 and dD = 9.90 × 1057. (b) gLB(t) for the same
parameters, except that both the x- and y-axes are log-scale.

the exact MTTF. We revisit the choice of data poitns in §VI.
Next, we discuss how to estimate the MTTF using simula-

tions. We use a biased coin toss experiment, where the biased
coin comes up with heads with probability PS , and tails with
probability PF = 1−PS . Tails denotes that the system iteration
is incorrect, and heads denotes that the system iteration is
correct. In each trial, the coin toss is repeated until tails is
encountered k−m+1 times among the last k consecutive coin
tosses. If Ω denotes the total number of trials and ωi denotes
the number of coin tosses during the ith trial, averaging ωi over
Ω trials, i.e., ω̂ = (

∑Ω
i=1 ωi)/Ω, gives the expected number

of iterations required to violate the (m, k) constraint. Using
ω̂, the MTTF is estimated as MTTFsim = ω̂ × T .
MTTFsim cannot be used to safely lower-bound S’s

reliability because it may over-approximate the reliability.
However, it is a useful baseline for evaluating MTTFLB . By
comparing MTTFLB with MTTFsim, we determine how
much accuracy we loose by sampling D data points when
deriving MTTFLB .

VI. EVALUATION

The objective of this section is twofold. First, we discuss
the method used to choose the data points d0, d1, d2, . . . , dD.
Second, we present results from a comparison of MTTFLB
and MTTFsim for different values of m, k, and PF .

A. Choosing d0, d1, d2, . . . , dD
In Fig. 1(a), we illustrate the function gLB(n) for m =

3, k = 10, and PF = 10−7. As expected based on §IV-B,
gLB(n) decreases with increasing n. Since MTTFLB depends
on gLB(n), the key idea is to ensure that points d0, d1, d2, . . . ,
dD are sufficient to trace the shape of function gLB(n), and
that the magnitude of gLB(n) is negligible beyond n = dD.

The first point d0 was set to (k−m+1), as mentioned in §V.
To compute the last point dD, i.e., the point at which gLB(n)
becomes negligible, we observed the logarithm of function
gLB(n) for n ∈ {1, 101, 102, 103, . . .}. That is, we plotted the
function gLB(n) on a logarithmic scale for both the x- and
y-axes as in Fig. 1(b), and then determined the time instant

at which the curve starts falling rapidly (e.g., dD ≈ 1055

in Fig. 1(b)). The intermediate points d1, d2, . . . , dD−1 were
chosen such that the step size di+1−di between any two con-
secutive points di and di+1 (i) is small enough to closely track
the function gLB(n), and (ii) yet still proportional to the order
of magnitude of di, to avoid evaluating an exponential number
of points. For example, while generating Fig. 1, the step size
was 1 for n ∈ (10, 100] and 1052 for n ∈ (1053, 1054].

B. MTTFLB versus MTTFsim

To compare MTTFLB and MTTFsim, we chose specific
parameters that ensure that the simulation completes within
reasonable time. In particular, we avoided parameters for
which MTTFLB was very high (typically, configurations
with a very small PF ), since the number of rounds in each
simulation trial for such parameters would likely be very
high as well. In Fig. 2, we illustrate the results for each
PF ∈ {10−1, 10−2, 10−3, 10−4}, k ∈ {5, 7, 10}, and m such
that k −m + 1 = 3, i.e., m ∈ {3, 5, 8} (respectively).

The simulations were run on a 16-core Intel Xeon E5-
2667 v2 machine. For each PF ∈ {10−1, 10−2, 10−3, 10−4},
we ran 640, 000, 64, 000, 6, 400, and 640 simulation trials,
respectively. To ensure that the number of trials for each sim-
ulation was sufficient, we also computed the 99% confidence
interval for each MTTFsim (shown as error bars in Fig. 2).
In general, the smaller the PF , the higher was the time to
finish a single simulation trial. The average times required
to complete a single simulation trial and the analytical lower
bound MTTFLB for different values of PF are illustrated in
Fig. 3 below. While the former grows exponentially in log PF ,
the latter grows linearly in log PF .

We draw the following conclusions from the experiments.
(1) For each configuration, MTTFLB and MTTFsim are
roughly of the same order of magnitude, which indicates that
the proposed method is sufficiently accurate. Note that while
evaluating system reliability, the order of magnitude of the
reliability metric (in this case, MTTF) is typically more impor-
tant than minor differences in absolute value. (2) MTTFLB is
always less than MTTFsim. This was expected since we use
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Fig. 2: The period of the system was T = 10ms. For MTTFsim, the 99% confidence intervals are shown as error bars.

a lower bound on the p.d.f.; MTTFLB is hence also a lower
bound on the exact MTTF. (3) MTTFLB can be computed
significantly faster than MTTFsim for low failure probabili-
ties, and scales to parameters yielding very high MTTFs.
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Overall, the experiments show that the proposed analysis
provides a fast method to compute a safe bound on the MTTF
of system with (m, k) constraints. The analytical results are
comparable to the simulation results, but unlike simulation,
they are provably sound and scalable.

VII. CONCLUSION

We have proposed an analysis to derive a safe lower bound
on the MTTF of a system with (m, k) constraints. MTTF is
one of the standard metrics for measuring system reliability.
While closed-form MTTF analyses can be derived for well-
known distributions and simple system models [12, Ch. 4], the
MTTF analysis for complex systems subject to different types
of failures is often difficult, requiring non-trivial techniques
(e.g., [9, 13–15]). To the best of our knowledge, for systems
with (m, k) constraints, or for the a/Con/b/c:F system model
used in this paper, there exists no prior work that safely lower-
bounds the system MTTF. Recent works by Eryilmaz et al. [7]
and Eryilmaz and Kan [6] derive approximate MTTFs.

As mentioned before, we plan to use the presented MTTF
analysis to quantify the overall reliability of a CAN-based
NCS with replicated tasks that are characterized using (m, k)
constraints, in the presence of environmentally-induced tran-
sient failures. We are currently developing an analysis to derive

IID failure probabilities for each iteration of a control loop of
the NCS. The IID property is guaranteed by the fact that we
consider worst-case scenarios w.r.t. the occurrence of faults
and interference, and since the iteration failure probability
is obtained independently of whether earlier iterations failed,
which justifies the IID assumption made in this work.

As future work, to obtain a more general analysis, we will
consider systems with multiple (m, k) constraints (e.g., sep-
arate constraints for delayed and incorrect messages, or for
modeling short-term and long-term behavior) and systems
with different flavors of (m, k) constraints (e.g., out of any
k consecutive iterations, less than m iterations may fail) [2].
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